TD : PROGRAMMATION DYNAMIQUE — PARTITION TABLEAU D’ENTIERS

TD : PROGRAMMATION DYNAMIQUE
== PARTITION EQUILIBREE D’UN TABLEAU D’ENTIERS POSITIFS ==

Remarque : les rappels théoriques sont en derniére page de ce sujet.

Le fichier source a utiliser pour ce TD est : « TD1 — Partition.py »

Une entreprise de logistique doit répartir des colis entre deux camions de livraison. Chaque
colis a un poids donné, et I'objectif est de répartir les colis de sorte que la différence de
charge entre les deux camions soit la plus faible possible. Cela permet d'équilibrer ['usure
des véhicules et d'optimiser la consommation de carburant.

Vous disposez de n = 6 colis avec les poids suivants (en kg) :
Colis 1 2 3 4 5 6

Poids 10 10 10 1 5 10

La somme totale des poids est S = 46 kg. L'objectif est de trouver un sous-ensemble de colis
dont la somme des poids est la plus proche possible de |S/2] = 23 kg.

L’objectif de ce TD est d’'implémenter les algorithmes de programmation dynamique
(approches top-down et bottom-up) pour résoudre ce probleme, puis reconstruire la
solution optimale. Vous utiliserez des dictionnaires Python pour mémoriser les résultats des
sous-problémes.

1) APPROCHE BOTTOM-UP (TABULATION)

Dans cette partie, vous allez implémenter I'approche bottom-up qui remplit une table de
tous les sous-problemes, des plus petits aux plus grands.

La liste des poids est déja définie dans le fichier source : poids = [10,10,10,1,5,10]

1. Ecrire une fonction initialiser_donnees(poids) quiretourne:
- Lasomme totale S
- LacibleidéaleS cible=S//2

2. Ecrire une fonction initialiser_table(cible) quicrée et retourne un dictionnaire
représentant la table P. La fonction doit uniquement initialiser les cas de base pour le
moment :

- P[(0, 0)] = True (on peut atteindre 0 avec 0 éléments)
- P[(0, s)] = False pour tout s de 1 a cible

3. Ecrire une fonction remplir_table(P, poids, cible) quiremplit entiérement la table
P en utilisant les équations de récurrence. Attention a I'ordre de parcours : on doit
calculer P[(i, s)] pouriallant de 1 a n, et pour chaque i, s allant de 0 a cible.

4. Ecrire une fonction trouver_meilleure_somme_bottomup(P, cible, poids) qui
parcourt la derniére ligne de la table (i = n) pour trouver la plus grande somme s telle que
P[(n, s)] = True.

TD : PROGRAMMATION DYNAMIQUE — PARTITION TABLEAU D’ENTIERS

Vérifier : >>> trouver_meilleure_somme_bottomup(P,S_cible, poids)
21
>>> AfficheTable(P,S_cible, poids)

Table de programmation dynamique

B Vrai
B Faux
Non calculé

Nombre d'éléments i

0 5 10 15 20
Somme cible s

5. Combien de sous-problemes sont calculés dans I'approche bottom-up ?

1) APPROCHE TOP-DOWN AVEC MEMOISATION

Dans cette partie, vous allez implémenter I'algorithme récursif avec mémoisation. L'idée est
de partir du probléme principal et de le décomposer en sous-probléemes, en mémorisant les
résultats pour éviter les calculs redondants.

La somme cible S_cible et la somme totale S ont déja été définies dans la premiéere partie.

On utilisera un dictionnaire définit dans le programme général pour la mémoisation : P = {}

1. Ecrire une fonction récursive rec_opt_val(i, s) quiimplémente la récurrence qui est
rappelée a la fin du sujet.

Tester : >>> rec_opt_val(6,23) >>> pec_opt_val(6,21)
False True
>>> rec_opt_val(2,10) >>> rec_opt_val(2,11)
True False

2. Ecrire une fonction trouver_meilleure_somme_topdown(cible, poids) qui:
- Teste d'abord si la cible idéale est atteignable
- Sioui, retourne cette cible
- Sinon, cherche la plus grande somme atteignable inférieure a la cible et la retourne

Tester : >>> P = {}

>>> trouver_meilleure_somme_topdown(S_cible, poids)
21

3. Quelle est la complexité temporelle de I'algorithme top-down avec mémoisation ?
Justifiez votre réponse en considérant le nombre de sous-problémes distincts et le co(t
de chaque sous-probleme.

4. Quelle est la complexité spatiale de cet algorithme ? Prenez en compte a la fois le
dictionnaire de mémoisation et la pile d'appels récursifs.

TD : PROGRAMMATION DYNAMIQUE — PARTITION TABLEAU D’ENTIERS

Vérifier : >>> P = {}
>>> trouver_meilleure_somme_topdown(S_cible,poids)
21

>>> AfficheTable(P,S_cible, poids)

Table de programmation dynamique

B Vrai
B Faux
Non calculé

Nombre d'éléments i

Somme cible s

Ill) RECONSTRUCTION DE LA SOLUTION

Maintenant que nous savons quelle est la meilleure somme atteignable, nous devons
déterminer quels colis mettre dans chaque camion. Cette étape s'appelle la reconstruction
de la solution.

La reconstruction consiste a « remonter » dans la table P pour déterminer, a chaque étape,
sil'élément i a été pris ou non. On part de P[(n, s_opt)] et on remonte jusqu'ai=0.

1. Ecrire une fonction element_pris(P, poids, i, s) quiretourne True sil'élémentia
été pris pour atteindre la somme s, False sinon.

2. Ecrire une fonction reconstruire_ensemblel(P, poids, n, s_opt) qui retourne la
liste des indices des colis a mettre dans le camion 1 (celui qui doit atteindre la somme

s_opt).

Tester : >>> camionl = reconstruire_ensemblel(P,poids,S_opt)
>>> print (camionl)
[6, 4, 3]

3. Ecrire une fonction construire_ensemble2(poids, ensemblel) quiretourne la liste
des indices des colis a mettre dans le camion 2 (ceux qui ne sont pas dans le camion 1).

Tester : >>> construire_ensemble2(poids, camionl)
[1, 2, 5]

4. Quelle est la complexité temporelle de I'algorithme de reconstruction ?

TD : PROGRAMMATION DYNAMIQUE — PARTITION TABLEAU D’ENTIERS

RAPPELS THEORIQUES

Formulation du probleme
Soit un tableau A = [ay, a,, ..., an] de n entiers positifs. On note S la somme totale des

éléments. L'objectif est de partitionner ce tableau en deux sous-ensembles dont la
différence des sommes est minimale.

Pour cela, on cherche un sous-ensemble dont la somme est la plus proche possible de |S/2].
Si on trouve un sous-ensemble de somme exactement |S/2], |a partition est parfaite
(différence nulle ou 1).

Sous-problémes et notation
On définit le sous-probléme P;s comme suit :
e Pis=Vraision peut atteindre exactement la somme s en utilisant uniquement les i
premiers éléments du tableau.
e Pis=Fauxsinon.

Relation de récurrence
Pour calculer Pis, on distingue deux cas selon que I'on prend ou non I'élément i :
- Casn®1 (on ne prend pas I'élément i) : la somme s doit étre atteignable avec les (i-1)
premiers éléments.
- Casn®2 (on prend I'élément i) : la somme (s - a;) doit étre atteignable avec les (i-1)
premiers éléments.

La récurrence s'écrit donc (avec I'opérateur OU logique) :
Pourtouti=1,2,..,nettouts=0,1,2,..,|5/2]:

P — {Pi—l,s a,>s
bs Pi—l,s ou Pi—l,s—al- a;<=s

Cas de base
Les cas de base sont les suivants :
® Poo=Vrai: on peut atteindre la somme 0 avec 0 éléments (en ne prenant rien).

e Pgs=Faux pour tout s >0 :on ne peut pas atteindre une somme positive sans aucun
élément.

Algorithme de reconstruction

Une fois la table P remplie et la meilleure somme atteignable s_opt trouvée, on reconstruit
la solution en « remontant » dans la table depuis Pn s opt jusqu'ai=0.

Principe : Pour chaque élément i (de n a 1), on détermine s'il a été pris ou non :
- Siaj<SETPi1sa = Vrai, alors I'élément i a été pris. On I'ajoute a I'ensemble et on met
ajours:=s-aj
- Sinon, I'élément i n'a pas été pris. On passe a I'élément suivant sans modifier s.

